OPTISCH AKTIVE ÜBERGANGSMETALL-KOMPLEXE

XVII*. OPTISCH AKTIVE OKTAEDRISCHE CARBONYL-KOMPLEXE VON CHROM, MOLYBDÄN UND WOLFRAM

HENRI BRUNNER und WOLFGANG ANTON HERRMANN Fachbereich Chemie der Universität Regensburg (Deutschland) (Eingegangen den 12. Dezember 1972)

SUMMARY

Substitution of 3 CO groups in *cis* position to each other in $M(CO)_6$ (M=Cr, Mo, W) by 3 ligands different from each other gives the chiral molecules *cis*-(CO)₃- $ML_1L_2L_3$. If instead of L_1L_2 the Schiff base of pyridine-2-carbaldehyde with (-)- α -phenylethylamine and instead of L_3 triphenylphosphine is used, diastereoisomers are obtained which differ in the configuration at the metal atom. The diastereoisomeric pairs VIa-VIb, VIIa-VIIb and VIIIa-VIIb can be separated into their (+)-and (-)-rotating components by fractional crystallisation.

ZUSAMMENFASSUNG

Die Substitution von 3 cis-ständigen CO-Gruppen in $M(CO)_6$ (M=Cr, Mo, W) durch 3 voneinander verschiedene Liganden ergibt die chiralen Moleküle cis-(CO)₃ML₁L₂L₃. Verwendet man anstelle von L₁L₂ die Schiff-Base von Pyridin-2carbaldehyd mit (-)- α -Phenyläthylamin und anstelle von L₃ Triphenylphosphin, so erhält man Diastereomere, die sich in der Konfiguration am Metallatom unterscheiden. Die Diastereomerenpaare VIa–VIb, VIIa–VIIb und VIIIa–VIIb lassen sich durch fraktionierte Kristallisation in ihre (+)- und (-)-drehenden Komponenten trennen.

EINLEITUNG

In einer früheren Arbeit² berichteten wir über die Darstellung von oktaedrischen Komplexen des Typs cis-(L)₃ML₁L₁L₃ (I), wobei das Zentralmetall M Chrom, Molybdän oder Wolfram sein kann und L eine Carbonylgruppe, L₁L₂ eine zweizähnige koordinierte Schiffsche Base des Pyridin-2-carbaldehyds sowie L₃ Triphenylphosphin bedeuten. Mit Pyridin-2-carbaldehyd-(isopropylimin) als Chelatligand L₁L₂ konnte anhand der magnetischen Nichtäquivalenz der diastereotopen

^{*} XVI. Mitteilung siehe Ref. 1.

Methylgruppen nachgewiesen werden, dass die entstehenden Tricarbonyl-Komplexe die Struktur eines all-*cis*-substituierten Oktaeders besitzen. Aufgrund der zentralen Chiralität (Punktgruppe C_1) liegen die Verbindungen in Form von Bild und Spiegelbild (Ia) und (Ib) vor.

Als nächster Schritt bot sich die Einführung eines weiteren Chiralitätszentrums in die all-cis-konfigurierten Komplexe Ia–Ib an, um die entstehenden Diastereomeren anschliessend voneinander trennen zu können. Dabei verwendeten wir als optisch aktiven Hilfsstoff die Schiffsche Base aus Pyridin-2-carbaldehyd und $(-)-\alpha$ -Phenyläthylamin, die auch bei der Darstellung von optisch aktiven Molybdän- und Wolfram-Komplexen mit 5 Liganden^{3,4} und einer Kobaltverbindung mit 4 verschiedenen

Liganden⁵ eingesetzt worden war. Die bisher untersuchten diastereomeren Komplexe mit Pyridin-2-carbaldehyd-[$S-\alpha$ -phenyläthylimin] als Ligand zeigen gute Kristallisationseigenschaften sowie deutliche Löslichkeitsunterschiede und lassen sich deshalb durch fraktionierte Kristallisation leicht voneinander trennen.

DARSTELLUNG DER KOMPLEXE

Die Darstellung der optisch aktiven, oktaedrischen Komplexe (VI)–(VIII) sowie ihrer Vorstufen (III)–(V) erfolgte wie die der Verbindungen mit den Schiffschen Basen von Pyridin-2-carbaldehyd mit Methylamin, Isopropylamin, Cyclohexylamin und Anilin² nach den Gleichungen (1) und (2).

In ihren Eigenschaften stimmen die neuen Komplexe weitgehend mit den analogen Verbindungen der optisch inaktiven Schiffschen Basen überein (Tabelle 1-4). Ihre Analysen- und Molgewichtswerte sind in Tabelle 5 zusammengestellt.

Die Massenspektren von (III)-(V) (Tabelle 4) zeigen den Molekülpeak, die stufenweise Abspaltung von vier Carbonyl-Gruppen und das Fragmentierungsschema der komplexgebundenen Schiffschen Base. Die Verbindungen (VI)-(VIII) zersetzen sich beim Versuch, die Massenspektren aufzunehmen.

TABELLE 1

EIGENSCHAFTEN DER PYRIDIN-2-CARBALDEHYD-[$S-\alpha$ -PHENYLÄTHYLIMIN]-KOM-PLEXE (III)-(VIII)

Verbindung	Ausb. (%) (bzgl. M(CO) ₆)	Schmp. (°C) (unkorrigiert)	Eigenfarbe
(III)	92	121	Rostfarben ^a
(IV)	94	99-100	Rotbraun ^e
(V)	89	127	Olivgrün ^a
(VI)	61	163 (Zers.)	Anthrazit ^b
(VII)	92	177-179 (Zers.)	Permanganat- farben ^b
(VIII)	58	182-184 (Zers.)	Blauviolett ^b

^a Aus Äthanol-Methylenchlorid. ^b Aus Aceton-Äther.

TABELLE 2

ν(C=O)- UND ν(C=N)-SCHWINGUNGEN (in cm⁻¹) DER PYRIDIN-2-CARBALDEHYD-[S-α-PHENYLÄTHYLIMIN]-KOMPLEXE (III)–(VIII) in KBr

V erbindung	v(C≡O)F	v(C=N) Frequenzen			
(III)	1996 s	1896 vs	1872 vs	1835 vs. s	sh 1608 w
(IV)	2009 s	1895 vs	1870 vs	1816 vs	1611 w
(V)	2004 vs	1888 vs	1863 vs	1812 vs	1610 m-w
(VI)		1909 vs	1813 s	1781 vs	1602 w
(VII)		1908 vs	1806 s	1778 vs	1598 w
(VIII)		1906 vs	1808 s	1781 vs	1600 w

MASSENSPEI									
Verbindung	m/e-Werte rel. Int. (%)	+[<i>M</i>]	[<i>M</i>] ⁺ - CO	[M] ⁺ -2CO	[M] ⁺ -3C0	$[M]^+ - 4CO$ (= $[M^*]^+$)	$[M^*]^+ - R^c$	$[M^{*}-NC_{5}H_{4}]^{+}$	₩ ₩
(111)		374 10	346 <1	318 < 1	290 15	262 42	157 100	130 37	22 S
(IV)		420 < 1		364 < 1	336 5	308 8	203 10	176 < 1	98 100
(X)		508 20	480 4	452 4	424 20	396 100	291 15	264 20	186 15

ABSORPTIONSMAXIMA v(cm⁻¹) UND MOLARE EXTINKTIONSKOEFFIZIENTEN & (1/Mol-cm) DER KOMPLEXE (111)-(V111) IN ACETON

TABELLE 3

TABELLE 4

186

BRUNNER, W. A. HERRMANN н

TABELLE 5

Verbindung	Summenformel	MolGew.ª		Analysenwerte			
			_	С	Н	N	M ^b
(III)	C ₁₈ H ₁₄ N ₂ O ₄ Cr	Gef. 375	Gef.	57.76	4.12	7.49	13.70
-		Ber. 374.0	Ber.	57.76	3.77	7.48	13.89
(IV)	C18H14N2O4Mo	Gef. 433	Gef.	51.95	3.34	6.72	
		Ber. 418.3	Ber.	51.69	3.37	6.70	
(V)	C18H14N2O4W	Gef. 522	Gef.	43.37	3.04	5.44	36.22
· ·		Ber. 506.2	Ber.	43.41	2.79	5.53	36.32
(VI)	C ₁₅ H ₂₉ N ₂ O ₁ PCr	Ber. 608.6	Gef.	69.00	5.08	4.52	
			Ber.	69.07	4.80	4.60	
(VII)	C35H29N2O3PM0	Ber. 652.5	Gef.	64.32	4.43	4.29	
			Ber.	64.43	4.45	4.29	
(VIII)	C35H29N2O3PW	Ber. 740.5	Gef.	56.75	3.98	3.79	
. ,			Ber.	56.77	3.95	3.78	

ANALYTISCHE DATEN DER PYRIDIN-2-CARBALDEHYD-[$S-\alpha$ -PHENYLÄTHYLIMIN]-KOMPLEXE (III)-(VIII)

" Knauer-Dampfdruckosmometer; in CHCl₃. ^b Als Cr₂O₃ bzw. WO₃.

TABELLE 6

SPEZIFISCHE DREHWERTE $[\alpha]_{436}^{23}$ DER TRICARBONYL-TRIPHENYLPHOSPHIN-[PYRIDIN-2-CARBALDEHYD-(-)- α -PHENYLÄTHYLIMIN]-METALL-KOMPLEXE (VI)-(VIII)⁶

Verbindung	а	Ь
(VI)	185°	+ 105°
(VII)	210°	+ 138°
(VIII)	193°	+ 126°

^a Gemessen in ca. 10⁻³ M Aceton-Lösungen.

DIASTEREOMERENTRENNUNG

Die Auftrennung der Diastereomerengemische VIa-VIb, VIIa-VIIb und VIIIa-VIIIb in ihre links- bzw. rechtsdrehenden Komponenten gelang durch fraktionierte Kristallisation aus Tetrahydrofuran-Äther. Die Trennoperationen müssen unter Ausschluss von Tageslicht durchgeführt werden, da sich die Verbindungen im gelösten Zustand am Licht schnell zersetzen. Lösungs-IR-Spektren sowie CD-Spektren konnten deshalb nicht aufgenommen werden. Die Löslichkeitsunterschiede der Isomeren sind geringer als bei den früher beschriebenen Komplexen³⁻⁵, so dass zahlreiche Kristallisationsschritte nötig sind, um Konstanz der Drehwerte zu erreichen. Die spezifischen Drehwerte der Verbindungen VIa-VIIIa und VIb-VIIIb sind in Tabelle 6 zusammengestellt. In Lösung fallen die Drehwerte der Komplexe ab. Während der Messungen ändern sich auch die Lichtdurchlässigkeit sowie die Farbe der Lösungen. Dabei tritt offensichtlich Zersetzung ein, denn auch die Analysenergebnisse der nach den Messungen zurückgewonnenen Komplexe entsprechen nicht mehr der Zusammensetzung der eingesetzten Verbindungen. In den optisch aktiven Verbindungen VIa–VIb, VIIa–VIIb und VIIIa–VIIb der allgemeinen Formel (L)₃ML₁L₂L₃ Ia, Ib entsprechen die 3 *cis*-ständigen Liganden L=CO dem Cyclopentadienylrest im Verbindungstyp C₅H₅ML₁L₂L₃, (IIa), (IIb) von dem bisher Beispiele aus der Mn, Fe-, Co- und Mo-Chemie bekannt sind⁵⁻⁷.

BESCHREIBUNG DER VERSUCHE

Alle Arbeiten wurden unter Ausschluss von Luftsauerstoff und unter Verwendung von stickstoffgesättigten, absolutierten Lösungsmitteln durchgeführt.

Die Elektronenspektren wurden in Aceton-Uvasolen der Fa. E. Merck, Darmstadt, mit einem Cary-14-Recording-Spectrophotometer aufgenommen, die IR-Spektren mit einem Perkin-Elmer-Infrarot-Gitterspektrometer, Modell 325. Die Drehwerte wurden mit einem Perkin-Elmer-Polarimeter, Modell 141 M, gemessen.

Die Komplexe (III)-(VIII) wurden nach den in Ref. 2 gegebenen Vorschriften analysenrein dargestellt. Die Triphenylphosphin-Komplexe (VI)-(VIII) müssen in Lösung unter Ausschluss von Licht und Luftsauerstoff gehandhabt werden.

Trennung der diastereomeren Komplexe VIa-VIb, VIIa-VIIb bzw. VIIIa-VIIIb

Man bereitetbei Raumtemperatur eine gesättigte Lösung des Diastereomerengemisches VIa–VIb, VIIa–VIIb bzw. VIIIa–VIIIb in Tetrahydrofuran und kühlt anschliessend langsam auf ca. -10° ab. Dann wird die Lösung vorsichtig mit dem halben Volumen Äther überschichtet und bei -35° der Kristallisation überlassen. Nach einigen Tagen haben sich am Gefässboden metallisch glänzende, intensiv gefärbte Kristalle abgeschieden. Diese Arbeitsgänge wiederholt man mit den erhaltenen Kristallen bei den Diastereomerengemischen VIa–VIb zwölfmal und VIIa–VIIb neunmal, während sich beim Diastereomerengemisch VIIIa–VIIIb der Drehwert der Komponente VIIIa erst nach 15maligem Umkristallisieren nicht mehr verändert. Die mit 2–5% Ausbeute gewonnenen Kristallfraktionen VIa, VIIa bzw. VIIIa zeigen bei 436 nm negative Drehwerte.

Zur Darstellung der leichter löslichen, positiv drehenden Fraktionen VIb, VIIb und VIIIb verwendet man die Mutterlaugen der 1. Kristallisation. Man führt die einzelnen Kristallisationsschritte wie oben beschrieben durch, nur geht man von der jeweils anfallenden Lösung aus, die vor der nächsten Kristallisation etwas eingeengt wird. Die Zahl der bis zur Konstanz der Drehwerte erforderlichen Trennungsschritte liegt für alle Komplexe zwischen 15 und 20 und hängt von der Menge der schwerlöslichen Fraktion ab, die bei den einzelnen Kristallisationen aus der Lösung entfernt wird. Die Ausbeuten an VIb, VIIb bzw. VIIIb, die man durch Eindampfen der Lösung der letzten Kristallisation erhält, betragen 4–7%.

DANK

Wir danken der Deutschen Forschungsgemeinschaft sowie dem Fonds der Chemischen Industrie für finanzielle Unterstützung.

LITERATUR

1 H. Brunner und W. A. Herrmann, Chem. Ber., 106 (1973) 632.

OPTISCH AKTIVE ÜBERGANGSMETALL-KOMPLEXE. XVII

- 2 H. Brunner und W. A. Herrmann, Chem. Ber., 105 (1972) 770.
- 3 H. Brunner und W. A. Herrmann, Angew. Chem., 84 (1972) 442; Angew. Chem., Int. Ed. Engl., 11 (1972) 418.
- 4 H. Brunner und W. A. Herrmann, Chem. Ber., 105 (1972) 3600.
- 5 H. Brunner und W. Rambold, J. Organometal. Chem., im Druck.

7

- 6 H. Brunner, Angew. Chem., 83 (1971) 274; Angew. Chem., Int. Ed. Engl., 10 (1971) 249.
- 7 H. Brunner und M. Lappus, Angew. Chem., 84 (1972) 955;
 - H. Brunner und M. Lappus, Angew. Chem. Int. Ed. Engl., 11 (1972) 923.